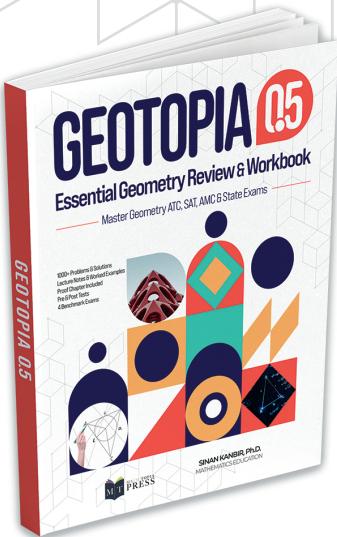
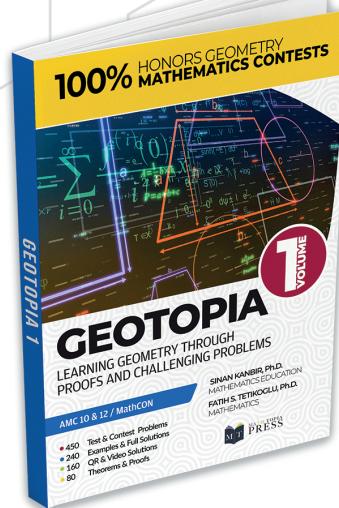
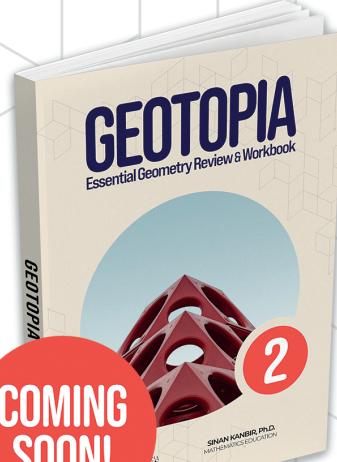
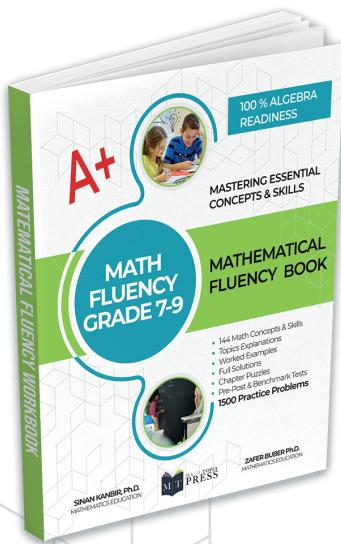
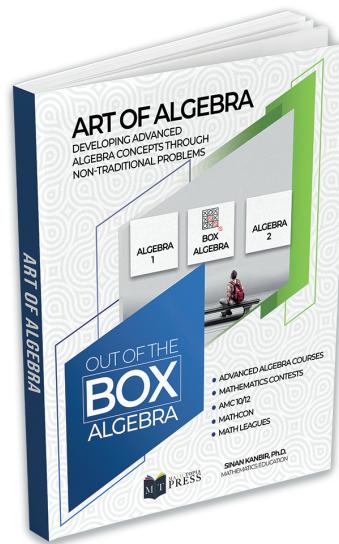
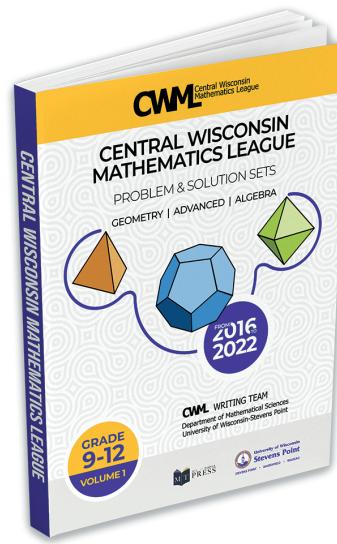
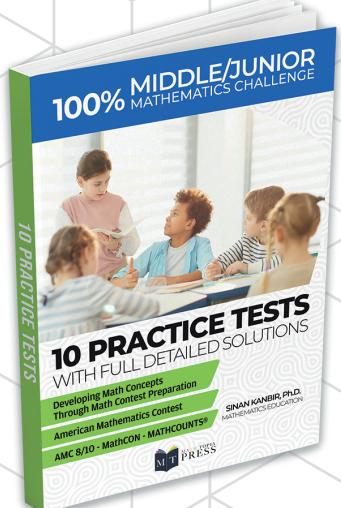
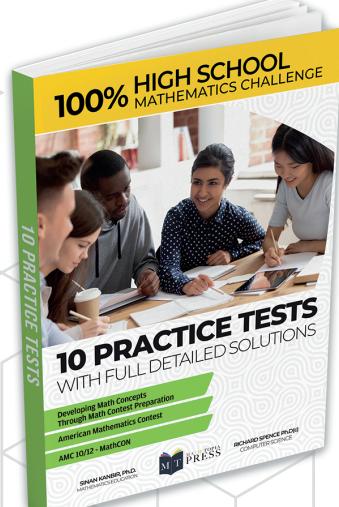
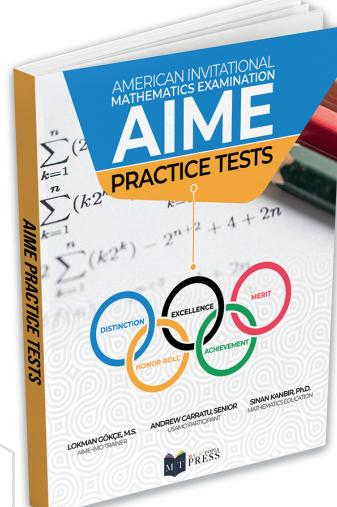


MATHTOPIA PRESS | GRADES 6–12

Competition-aligned Math With Curriculum Support



About the Author — Sinan Kanbir, PhD

Sinan Kanbir is a math education professor who loves helping students understand and enjoy geometry. He teaches future teachers at the **University of Wisconsin–Stevens Point** and creates math materials for **K–12 students**.

Dr. Kanbir created the **GeoTopia** courses and teaches **GeoTopia** summer camps, where middle and high school students explore geometry through visuals, patterns, and meaningful problem solving. Instead of focusing on memorization, his approach helps students learn how to see structure, think logically, and explain their ideas clearly.

He also helps write math contest problems for organizations such as the **Central Wisconsin Math League (CWML)**, **MathCON**, and the **MAA Wisconsin Section Math Contest**. Dr. Kanbir believes that everyone can learn geometry and that math can be challenging, creative, and fun.

Welcome to GeoTopia 0.5

A Message to Students

Why Start Geometry Early?

In the United States, geometry is often taught in **high school (Grades 9 or 10)**. However, students can begin learning geometry as early as **7th grade**.

Starting earlier helps you:

- Improve **spatial reasoning**
- Strengthen **visual thinking**
- Build a solid foundation in **Euclidean geometry**

GeoTopia 0.5 is designed to help you grow these skills step by step—before formal proofs begin.

How This Book Helps You Learn

By working through the **GeoTopia 0.5** problems, you will:

- Learn to **see patterns and structure** in shapes
- Practice explaining ideas using **clear mathematical reasoning**
- Strengthen your **algebra skills** by working with formulas, variables, and relationships
- Improve your **math reading skills** by following **short, logical solutions**

Geometry is not just about shapes—it helps you think more clearly in **all areas of math**.

How to Use This Book Successfully

- Draw diagrams
- Take your time
- Make mistakes and try again
- Read the **short solutions** carefully
- Ask yourself **why** each step works

Every problem is an opportunity to grow your thinking.

Remember

Geometry is not about memorizing formulas.

It is about **seeing, thinking, and making sense of ideas.**

If you stay curious and keep practicing, you will build confidence and discover that geometry can be **logical, creative, and enjoyable.**

What is GeoTopia 0.5 and What Makes This Book Special and Unique?

GeoTopia 0.5: Essential Geometry Review and Workbook is a comprehensive **bridge-level geometry resource** designed to strengthen students' core geometric understanding while preparing them for **school assessments, standardized exams, and math competitions**. Positioned between **GeoTopia 0** and **GeoTopia 1**, this book builds the essential foundations needed for advanced reasoning, formal geometry, and contest-level thinking.

GeoTopia 0.5 is **fully aligned with the New York State Regents Geometry Exam**, fits **100% of most states' end-of-year geometry exams**, and provides strong preparation for **AMC 8 and AMC 10 geometry topics**, as well as the **SAT and ACT geometry sections**. The book intentionally connects **classroom geometry, standardized test preparation, and competition-style problem solving** through a **balanced, visual-first approach**.

Rather than emphasizing memorization, GeoTopia 0.5 helps students develop **geometric intuition, logical structure, and confidence** in applying ideas to unfamiliar problems. Visual reasoning, pattern recognition, and short, clear solutions make abstract concepts accessible and meaningful.

Inside, students will find **1000+ carefully sequenced problems, step-by-step worked examples, and visual proofs** that support both **conceptual understanding and procedural fluency**. Each chapter follows a structured progression that guides students from learning and exploration to reasoning and application, ensuring deep and lasting understanding.

Whether used for **self-study, classroom instruction, enrichment programs, gifted education, summer camps, or competition preparation**, GeoTopia 0.5 prepares learners not only to succeed on exams—but to **think geometrically with clarity and confidence**.

Target Audiences of This Book

GeoTopia 0.5 is primarily designed for students in **Grades 8–10**, with content and pacing aligned to middle and early high school geometry expectations. It is also well suited for **advanced or accelerated 7th-grade students** who are ready to begin geometry earlier.

This book is ideal for:

- **Students in Grades 8–10** studying or preparing for formal geometry
- **Advanced and accelerated 7th graders** with strong mathematical readiness
- **Students preparing for the New York State Regents Geometry Exam** and **most states' end-of-year geometry exams**
- **Students preparing for standardized tests**, including the **SAT** and **ACT** geometry sections
- **Students preparing for math competitions**, especially **AMC 8** and **AMC 10** geometry topics
- **Students transitioning into high school geometry** who need a strong conceptual foundation
- **Advanced and gifted learners** seeking deeper reasoning and challenge
- **Math circles, enrichment programs, and summer camps**
- **Classroom teachers and homeschool educators** seeking a comprehensive and flexible geometry resource
- **Independent learners** who benefit from clear explanations and worked examples

Whether used for **classroom instruction, enrichment, self-study, or competition preparation**, **GeoTopia 0.5** supports students in developing **strong geometric reasoning, fluency, and confidence**.

🎯 Competition & Exam Alignment – GeoTopia 0.5

Math Competitions

Competition	Alignment
AMC 8 (Geometry)	✓ 100% aligned
AMC 10 (Geometry)	✓ 100% aligned
MathCON (Grades 6-10)	✓ Full alignment
MathCounts (Geometry enrichment)	✓ Full alignment

Standardized & State Exams

Exam	Alignment
New York State Regents Geometry Exam	✓ 100% aligned
State End-of-Year Geometry Exams	✓ Strong alignment
SAT (Geometry)	✓ 100% aligned
ACT (Geometry)	✓ 100% aligned

When to Choose GeoTopia 0.5

GeoTopia 0.5 is ideal for students who:

- Are preparing for **AMC 8 or AMC 10 geometry** with full topic coverage
- Are beginning or strengthening **high school geometry**
- Need a **conceptual, visual-first bridge** before formal proofs
- Are preparing for **Regents, SAT, and ACT exams**

How GeoTopia 0.5 Aligns with Exams & Math Competitions

GeoTopia 0.5 is a bridge-level geometry workbook designed to build *visual reasoning, diagram interpretation, and conceptual fluency*. Its worked examples and carefully sequenced problem sets align with the structure, rigor, and expectations of major U.S. state exams and national math competitions.

NYSED Geometry Regents Exam

A comprehensive state exam administered by the New York State Education Department. It emphasizes accurate diagram use, logical explanations, and precise application of geometric properties involving angles, triangles, parallel lines, and polygons. GeoTopia 0.5 mirrors Regents-style expectations through concise explanations and step-by-step reasoning. Official site: nysed.gov/state-assessment/geometry

High School Geometry State Exams (General Passing Exams)

End-of-course or graduation-required geometry exams used across many U.S. states. These exams assess mastery of angles, triangles, polygons, circles, similarity, congruence, and coordinate geometry.

GeoTopia 0.5 supports these exams by reinforcing core concepts, diagram interpretation, and structured reasoning commonly required for passing.

Representative state exams include:

- **Texas STAAR (Geometry / EOC)** — emphasizes geometric relationships, transformations, and problem-solving using diagrams.

Official site: tea.texas.gov/student-assessment/staar

- **California State Geometry Exams (CAASPP / Smarter Balanced)** — focuses on conceptual understanding, visual modeling, and application of geometry standards.

Official site: cde.ca.gov/ta/tg/ca

AMC 8

A national middle-school competition focused on mathematical reasoning rather than advanced algebra. Geometry problems rely heavily on visual insight, angle chasing, symmetry, and spatial reasoning. GeoTopia 0.5 develops these skills through diagram-driven worked examples and targeted practice.

Official site: maa.org/student-programs/amc

MathCounts

A rigorous middle-school competition requiring creative, non-routine problem-solving under time pressure. Geometry problems often combine multiple concepts within a single diagram. GeoTopia 0.5 builds flexible thinking and efficient geometric strategies essential for MathCounts success.

Official site: mathcounts.org

MathCON

A concept-based competition for Grades 4–8 emphasizing understanding over memorization. Geometry problems test spatial reasoning, interpretation, and logical consistency. GeoTopia 0.5 aligns closely through accessible explanations and concept-focused problem sets.

Official site: mathcon.org

SAT

A college entrance exam assessing applied geometry in real-world and abstract contexts. Students must interpret diagrams, connect multiple concepts, and reason efficiently. GeoTopia 0.5 reinforces the geometric fluency and diagram interpretation skills needed for SAT preparation.

Official site: collegeboard.org

ACT

A fast-paced college readiness exam where geometry questions reward quick recognition of standard configurations and efficient solution paths. GeoTopia 0.5 trains students to solve accurately using minimal, well-organized steps.

Official site: act.org

Summary

Across state exams and national competitions, **GeoTopia 0.5** develops strong diagram literacy, conceptual geometric understanding, and efficient, exam-ready problem-solving skills suitable for middle school through early high school learners.

Acknowledgments

This book was shaped by a shared love of mathematics and the joy of deep thinking. The author gratefully acknowledges the exceptional problem-solving insight, thoughtful feedback, and careful review of the following students:

Holly Speranza (Rhode Island)

Itai Firstenberg (California)

Ayaan Garg (Massachusetts)

Aisha Tanimu (Wisconsin)

Furkan Akif Doğan (Texas)

Yusuf Oktay (North Carolina)

Their creativity, precision, and commitment to mathematical clarity meaningfully strengthened this book.

The author also extends sincere thanks to the MathTopia Academy instructors—Mr. Annayev, Andrew Carratu (MIT), Sarah Zuge (Georgia Institute of Technology), and Ava Kumar (Cornell University)—for their mentorship, guidance, and continued inspiration.

Finally, heartfelt appreciation goes to the students from MathPath, MathCON, and the MathTopia Academy Summer Math Camps, whose curiosity, persistence, and enthusiasm for problem-solving helped shape the vision and development of GeoTopia 0.5. Special thanks are extended to long-time problem solvers and dedicated volunteers, including Cindy Speranza (Rhode Island) and Maitreya Mukhopadhyay (Texas), whose continued commitment to supporting mathematically promising students—and whose encouragement throughout the process—made this work possible.

TABLE OF CONTENTS

PRE-TEST

GeoTopia 0.5 Pre-Test & Evaluation	11
--	----

CHAPTER 01

Angles	19
Problem Set A	23
Problem Set B	25
Problem Set C	27

CHAPTER 02

Triangles	29
Problem Set A	33
Problem Set B	35
Problem Set C	37

CHAPTER 03

Triangles: Right & Special	39
Problem Set A	43
Problem Set B	45
Problem Set C	47

CHAPTER 04

Triangles: Lengths	49
Problem Set A	53
Problem Set B	55
Problem Set C	57

CHAPTER 05

Triangles: Areas	59
Problem Set A	63
Problem Set B	65
Problem Set C	67

Benchmark 1

Benchmark 1 (Chapters 1-5)	69
----------------------------------	----

CHAPTER 06

Polygons: Angles	73
Problem Set A	77
Problem Set B	79
Problem Set C	81

CHAPTER 07

Polygons: Lengths	83
Problem Set A	89
Problem Set B	91
Problem Set C	93

CHAPTER 08

Polygons: Areas	95
Problem Set A	101
Problem Set B	103
Problem Set C	105

Benchmark 2

Benchmark 2 (Chapters 6-8)	107
----------------------------------	-----

CHAPTER 09

Circles: Angles	111
Problem Set A	117
Problem Set B	119
Problem Set C	121

CHAPTER 10

Circles: Lengths	123
Problem Set A	127
Problem Set B	129
Problem Set C	131

CHAPTER 14

Trigonometry	171
Problem Set A	177
Problem Set B	179

CHAPTER 11

Circles: Areas	133
Problem Set A	139
Problem Set B	141
Problem Set C	143

CHAPTER 15

Transformations	181
Problem Set A	187
Problem Set B	189

Benchmark 3

Benchmark 3 (Chapters 9–11)	145
--	-----

Benchmark 4

Benchmark 4 (Chapters 12–15)	191
---	-----

CHAPTER 12

Analytical Geometry	149
Problem Set A	155
Problem Set B	157
Problem Set C	159

POST-TEST

GeoTopia 0.5 Post-Test & Evaluation	195
--	-----

CHAPTER 13

Three-Dimensional Geometry	161
Problem Set A	167
Problem Set B	169

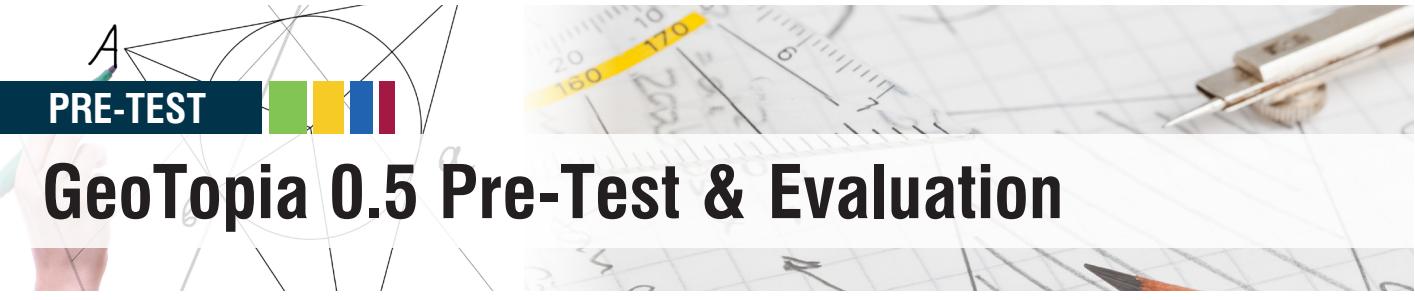
CHAPTER Z

Proof Workshop & Enrichment	203
--	-----

SOLUTIONS

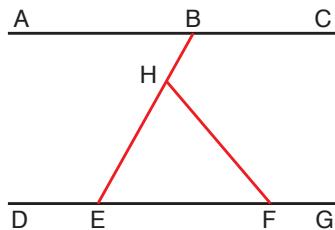
Solutions	219
------------------------	-----

GeoTopia 0.5 Pre-Test & Evaluation



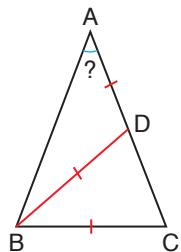
1. (NYSED, Geometry Regents Exam, Jan 16 Q. 12)

In the diagram below, $\overline{ABC} \parallel \overline{DEFG}$. Transversal \overline{BHE} and line segment HF are drawn.



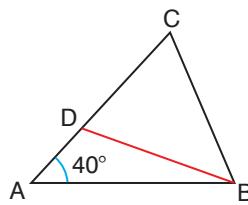
If $m\angle HFG = 130^\circ$ and $m\angle EHF = 70^\circ$, what is $m\angle ABE$?

2. Triangle ABC is an isosceles triangle with $AB = AC$ and $AD = BD = BC$. What is the measure of the angle BAC?

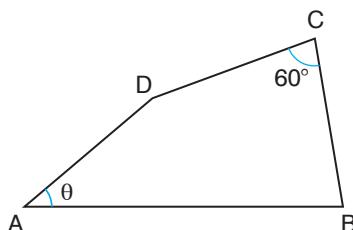


3. In the diagram, $AB = AC$ and D is a point on AC such that $BD = BC$. Angle BAC is 40° .

What is angle ABD?



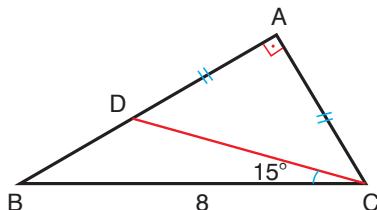
4. $BC = CD = DA$, $\angle C = 60^\circ$, and $m\angle ADC = 150^\circ$. $m\angle A = ?$



5. In right triangle ABC

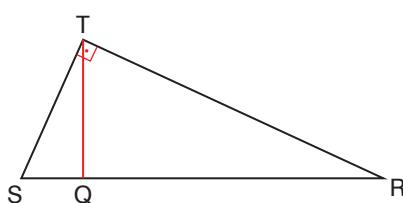
- $AB \perp AC$.
- $\angle BCD = 15^\circ$.
- $AD = AC$
- $BC = 8 \text{ cm}$.

Find the length of AB.



6. (NYSED, Geometry Regents Exam, Aug 23 Q. 30)

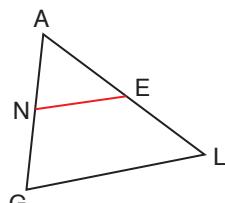
Right triangle STR is shown below, with $m\angle T = 90^\circ$. Altitude \overline{TQ} is drawn to \overline{SQR} , and $TQ = 8$.



If the ratio $SQ : QR$ is 1:4, determine and state the length of \overline{SR} .

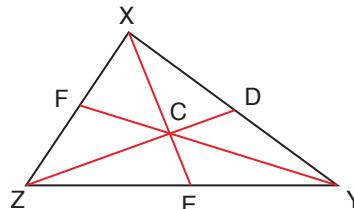
7. (NYSED, Geometry Regents Exam, Aug 24 Q. 29)

In $\triangle AGL$ below, N and E are the midpoints of \overline{AG} and \overline{AL} , respectively.



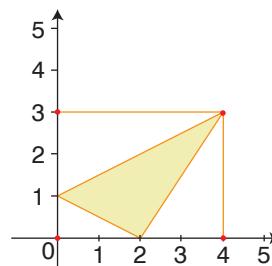
If $NE = 15$ and $GL = 3x - 12$, determine and state the value of x .

8. In $\triangle XYZ$ shown below, medians \overline{XE} , \overline{YF} , and \overline{ZD} intersect at C.



If $CE = 5$, $YF = 21$, and $XZ = 15$, determine and state the perimeter of triangle CFX.

9.



What is the area of the shaded triangle?

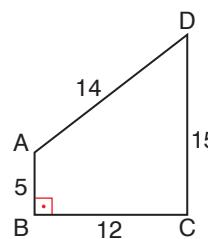
10. In the figure,

$AB = 5 \text{ cm}$, $BC = 12 \text{ cm}$, $CD = 15 \text{ cm}$, $AD = 14 \text{ cm}$, with $\angle ABC = 90^\circ$.

The area of a triangle with sides a , b , c is given by Heron's formula:

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}, \text{ where } s = \frac{a+b+c}{2}.$$

Using this, find the area of quadrilateral ABCD.



My Notes:

My Notes:

MathTopia Press

GeoTopia 0.5 Pre-Test & Evaluation

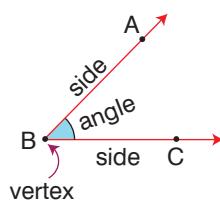
Problem	Topic	My Answer	Correct Answer	Notes
1	Angles (Problem 1)			
2	Angles (Problem 2)			
3	Triangles: Angles & Inequalities (Problem 1)			
4	Triangles: Angles & Inequalities (Problem 2)			
5	Triangles: Right & Special (Problem 1)			
6	Triangles: Right & Special (Problem 2)			
7	Triangles: Lengths (Problem 1)			
8	Triangles: Lengths (Problem 2)			
9	Triangles: Areas (Problem 1)			
10	Triangles: Areas (Problem 2)			
11	Polygons: Angles (Problem 1)			
12	Polygons: Angles (Problem 2)			
13	Polygons: Lengths (Problem 1)			
14	Polygons: Lengths (Problem 2)			
15	Polygons: Areas (Problem 1)			
16	Polygons: Areas (Problem 2)			
17	Circles: Angles (Problem 1)			
18	Circles: Angles (Problem 2)			
19	Circles: Lengths (Problem 1)			
20	Circles: Lengths (Problem 2)			
21	Circles: Areas (Problem 1)			
22	Circles: Areas (Problem 2)			
23	Analytical Geometry (Problem 1)			
24	Analytical Geometry (Problem 2)			
25	Three-Dimensional Geometry (Problem 1)			
26	Three-Dimensional Geometry (Problem 2)			
27	Trigonometry (Problem 1)			
28	Trigonometry (Problem 2)			
29	Transformations (Problem 1)			
30	Transformations (Problem 2)			
31	Miscellaneous (Problem 1)			
32	Miscellaneous (Problem 2)			

Angles

Definition 1.1

Angle, Side, and Vertex

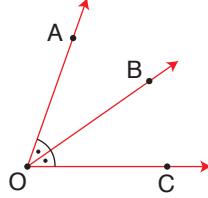
An **angle** is a union of two rays that have a common endpoint. The two rays are called the **sides** of the angle. The common endpoint is called the **vertex** of the angle.



Definition 1.2

Angle Bisector

An **angle bisector** is a line ray or line segment that divides an angle into two congruent angles. In the figure, ray OB is a bisector of $\angle AOC$ because $m\angle AOB = m\angle BOC$ and $m\angle AOB = \frac{1}{2} m\angle AOC$.



Definition 1.3

Types of Angles (by Measure)

• Acute Angle:

An angle $\angle A$ is **acute** if $0^\circ < m\angle A < 90^\circ$.

• Right Angle:

An angle $\angle A$ is **right angle** if $m\angle A = 90^\circ$.

• Obtuse Angle:

An angle $\angle A$ is **obtuse** if $90^\circ < m\angle A < 180^\circ$.

• Straight Angle:

An angle $\angle A$ is **straight** if $m\angle A = 180^\circ$.

• Reflex Angle:

An angle $\angle A$ is **reflex** if $180^\circ < m\angle A < 360^\circ$.

• Complete Angle:

An angle $\angle A$ is **complete** if $m\angle A < 360^\circ$.

Definition 1.4

Complementary Angles

Two angles are called complementary if the sum of their measure is 90° .

$$m\angle A + m\angle B = 90^\circ$$

Each angle is called the **complement** of the other.

Definition 1.5

Supplementary Angles

Two angles are called supplementary if the sum of their measures is 180° .

$$m\angle A + m\angle B = 180^\circ$$

Each angle is called the **supplement** of the other.

Example 1.1

$\angle ABC$ is a straight angle.

If $\angle ABD = 2y + 14$ and $\angle DBC = y + 22$, find y and each angle.

Solution:

$$(2y + 14) + (y + 22) = 180$$

$$3y + 36 = 180 \Rightarrow y = 48$$

$$\angle ABD = 2(48) + 14 = 110^\circ, \angle DBC = 48 + 22 = 70^\circ$$

Example 1.2

Two angles are complementary. One is x° , the other is $(3x - 10)^\circ$. Find x .

Solution:

$$x + (3x - 10) = 90$$

$$4x - 10 = 90 \Rightarrow 4x = 100 \Rightarrow x = 25$$

Angles: 25° and 65°

Example 1.3

In ABC, \overline{BD} bisects $\angle ABC$. If $\angle ABD = 2x + 5$ and $\angle DBC = x + 17$, find x .

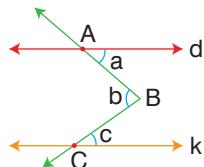
Solution:

Since BD bisects $\angle ABC$:

$$2x + 5 = x + 17$$

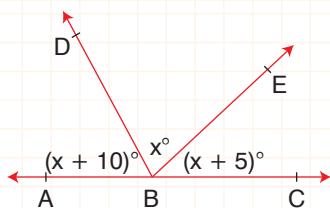
$$x = 12$$

$$\angle ABD = \angle DBC = 29^\circ, \angle ABC = 58^\circ$$

Property 1.1

In the figure, if $d \parallel k$ and B is the intersection of $[BA]$ and $[BC]$, then

$$b^\circ = a^\circ + c^\circ$$

Example 1.4

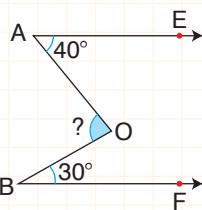
Points A, B and C are on the same line. What is the measure of angle $\angle ABE$?

Solution:

$$(x + 10) + x + (x + 5) = 180 \Rightarrow 3x + 15 = 180 \Rightarrow x = 55.$$

$$m\angle ABE = (x + 10) + x = 2x + 10 = 120^\circ.$$

MathTopia Press

Example 1.6

In the figure, $[AE] \parallel [BF]$, $m\angle A = 40^\circ$, and $m\angle B = 30^\circ$. Find $m\angle AOB$.

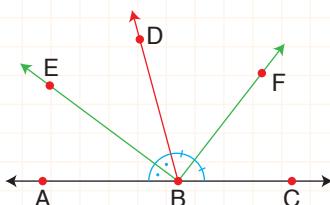
Solution:

$$m\angle AOB = m\angle OAE + m\angle OBF$$

$$m\angle AOB = 40^\circ + 30^\circ = 70^\circ$$

Example 1.5

In the figure, BE and BD are the bisectors of $\angle ABD$ and $\angle CBD$, respectively. Find $m\angle EBF$.



Solution:

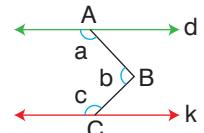
Since A, B, C are collinear,

$$m\angle ABD + m\angle CBD = 180^\circ$$

Because BE and BF are bisectors:

$$m\angle EBF = \frac{1}{2} m\angle ABD + \frac{1}{2} m\angle CBD$$

$$m\angle EBF = \frac{1}{2} (180^\circ) = 90^\circ$$

Property 1.2

In the figure, if $d \parallel k$ and B is the intersection of $[BA]$ and $[BC]$, then

$$a^\circ + b^\circ + c^\circ = 360^\circ.$$

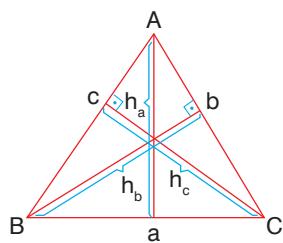
Triangles: Areas

Theorem 1.1

Acute Triangle's Area

Suppose a , b , and c are the length of sides and h_a , h_b , and h_c are length of altitudes of a , b , and c .

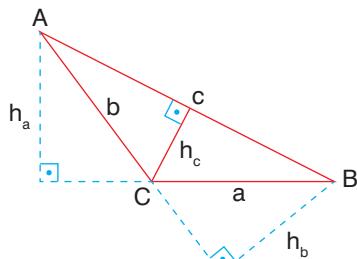
$$\text{Area} = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2}$$



Theorem 1.2

Obtuse Triangle's Area

$$\text{Area} = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2}$$



Example 1.1

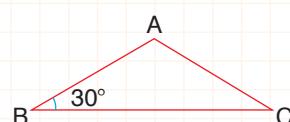
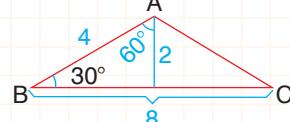
Suppose $AB = 4$ units, $BC = 8$ unit, and $m\angle B = 30^\circ$.

What is the area of $\triangle ABC$ in square units?

Solution:

From $30^\circ - 60^\circ - 90^\circ$ triangle, the height of $\triangle ABC$ is 2 units.

Area $\triangle ABC = \frac{8 \cdot 2}{2} = 8$ square units.

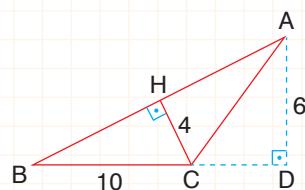


Example 1.2

In the figure, $CH = 4$,

$AD = 6$, and $BC = 10$.

What is AB ?



Solution:

Use $A_{\triangle} = \frac{1}{2} bh$ with two different bases.

- With base $BC = 10$, the corresponding altitude is 6:

$$[ABC] = \frac{1}{2} (10)(6) = 30.$$

- With base AB , the corresponding altitude is 4:

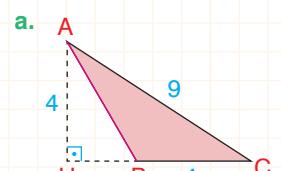
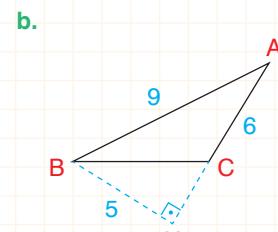
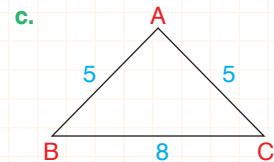
$$[ABC] = \frac{1}{2} (AB)(4) = 2AB.$$

Equate the two expressions for the same area:

$$30 = 2AB \Rightarrow AB = 15.$$

Example 1.3

Find the area of the triangle.



Solution:

a. $A(\triangle ABC) = \frac{|BC| \cdot |AH|}{2} = \frac{4 \cdot 4}{2} = 8 \text{ cm}^2$

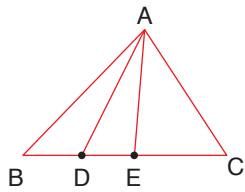
b. $A(\triangle ABC) = \frac{|AC| \cdot |BH|}{2} = \frac{6 \cdot 5}{2} = 15 \text{ cm}^2$

c. $|AH|^2 + 4^2 = 5^2 \Rightarrow |AH|^2 = 9$

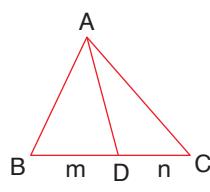
$$|AH| = 3 \Rightarrow A(\triangle ABC) = \frac{|BC| \cdot |AH|}{2} = \frac{8 \cdot 3}{2} = 12 \text{ cm}^2$$

Quick Note

- If two triangles have equal height, then ratio of their areas is the ratio of their bases.
- If two triangles have equal bases, then ratio of their areas is the ratio of their height.



Area(ABD) : Area(ADE) : Area(AEC) = BD : DE : EC



$$\frac{\text{Area}(ABD)}{\text{Area}(ADC)} = \frac{m}{n}$$

So

$$\frac{[\triangle FDH]}{[\triangle ADC]} = \frac{FH}{AC} = \frac{1}{4} \Rightarrow [\triangle ADC] = 4 \cdot [\triangle FDH] = 4 \cdot 4 = 16.$$

- On base BC, $2|BD| = 3|DC| \Rightarrow BD : DC = 3 : 2$.

$\triangle ABD$ and $\triangle ADC$ share the same height from A to BC.

Hence

$$\frac{[\triangle ABD]}{[\triangle ADC]} = \frac{BD}{DC} = \frac{3}{2} \Rightarrow [\triangle ABD] = \frac{3}{2} \cdot 16 = 24.$$

- Total area:

$$[\triangle ABC] = [\triangle ABD] + [\triangle ADC] = 24 + 16 = 40 \text{ cm}^2$$

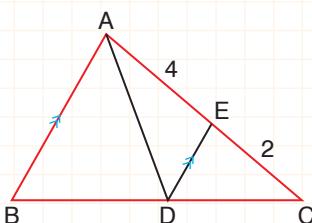
Example 1.4

Segments AB and ED are parallel. $\text{Area}(ADE) = 12$.

What is $\text{area}(ABD)$?

Solution:

Reason (using the area-base idea):



- $ED \parallel AB \Rightarrow \text{triangles}$

$\triangle ADE$ and $\triangle ABD$ have the same height (distance from A to the parallel lines).

$$\text{Hence } \frac{[\triangle ADE]}{[\triangle ABD]} = \frac{DE}{AB}.$$

- Because $ED \parallel AB$, $\triangle DEC \sim \triangle ABC$ (AA).

Corresponding sides give $\frac{DE}{AB} = \frac{EC}{AC} = \frac{2}{4+2} = \frac{1}{3}$.

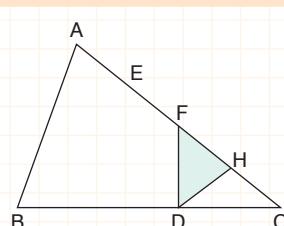
- From (1) and (2): $[\triangle ADE] : [\triangle ABD] = 1 : 3$.

Given $[\triangle ADE] = 12$, we get $[\triangle ABD] = 3 \cdot 12 = 36$.

MathTopia Press

Example 1.5

In triangle ABC, $|AE| = |EF| = |FH| = |HC|$, $2|BD| = 3 \cdot |DC|$ and $A(FDH) = 4 \text{ cm}^2$ then find $A(ABC)$.



Solution:

- Points A, E, F, H, C split

$$AC \text{ into four equal pieces} \Rightarrow \frac{FH}{AC} = \frac{1}{4}.$$

- $\triangle FDH$ and $\triangle ADC$ have the same height from D to line AC (perpendicular FD).

Quick Note**Complete the Rectangle**

We can find the **area of a triangle using coordinates** - even if we don't know its side lengths!

Let's use the vertices: A(2, 3), B(0, 0), C(4, 1)

Step 1. Draw and Enclose

Plot the triangle and draw the **smallest rectangle** that completely encloses it.

The rectangle's area: $A_{\text{rectangle}} = 4 \times 3 = 12$

Step 2. Subtract Outside Triangles

There are **three outer triangles** labeled ①, ②, and ③.

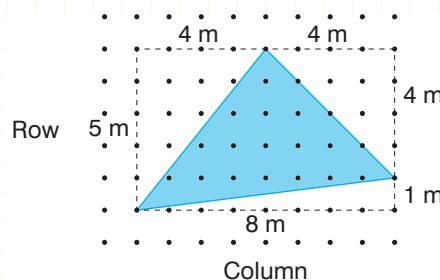
$$A_1 = \frac{2 \times 3}{2} = 3, A_2 = \frac{2 \times 2}{2} = 2, A_3 = \frac{4 \times 1}{2} = 2$$

Step 3. Find the Area of $\triangle ABC$

$$A_{\triangle ABC} = A_{\text{rectangle}} - (A_1 + A_2 + A_3) = 12 - (3 + 2 + 2) = 5 \text{ square units}$$

Example 1.6

Alain has a $7 \text{ m} \times 9 \text{ m}$ backyard and decides to construct a triangular-shaped patio. He plots his backyard plan on a graph as follows:



What is the area of his patio? How much space does he have left in his backyard?

Solution:

$$A_{\text{patio}} = A_{\text{rectangle}} - A_{\text{①}} - A_{\text{②}} - A_{\text{③}} \\ = (5 \times 8) - \frac{5 \times 4}{2} - \frac{4 \times 4}{2} - \frac{8 \times 1}{2} = 40 - 10 - 8 - 4 = 18 \text{ m}^2$$

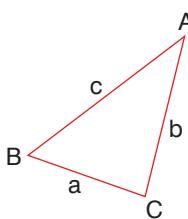
The area of Alain's patio is 18 m².

After building his patio, he will have $(7 \times 9) - 18 = 63 - 18 = 45 \text{ m}^2$ of his backyard left.

Theorem 1.3**Heron's Formula**

Let a, b, and c be the side lengths of $\triangle ABC$. Then,

$$A_{\triangle ABC} = \sqrt{s(s-a)(s-b)(s-c)} \text{ where } s = \frac{1}{2}(a+b+c) \text{ is the semi-perimeter of } \triangle ABC.$$

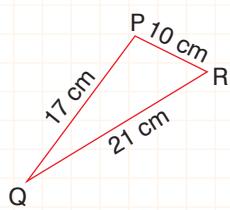
**Example 1.7**

Find the area of $\triangle PQR$:

Solution:

$$s = \frac{1}{2}(10 + 21 + 17) = 24$$

$$A_{\triangle PQR} = \sqrt{24(24-10)(24-21)(24-17)} \\ = \sqrt{24(14)(3)(7)} = \sqrt{7056} = A_{\triangle PQR} = 84 \text{ cm}^2$$

**Practice 1**

In rectangle ABCD, AB = 6 and AD = 8. Point M is the midpoint of \overline{AD} . What is the area of $\triangle AMC$?

A) 12 B) 15 C) 18 D) 20 E) 24

Solution:

$$AB = 6, AD = 8, M \text{ is midpoint of } AD \Rightarrow AM = \frac{AD}{2} = 4.$$

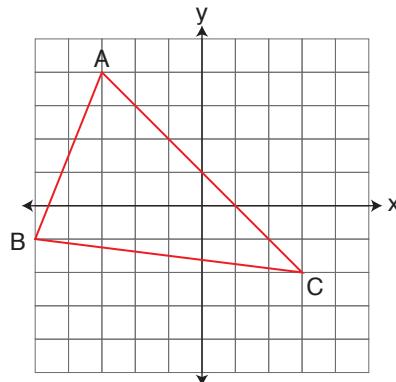
Line AM is a vertical side of the rectangle; the perpendicular distance from C to AM is the rectangle's width AB = 6.

Thus

$$[\triangle AMC] = \frac{1}{2} \cdot (\text{base } AM) \cdot (\text{height } = 6) = \frac{1}{2} \cdot 4 \cdot 6 = 12.$$

Practice 2

Triangle ABC is graphed on the set of axes below. The vertices of $\triangle ABC$ have coordinates A(-3, 4), B(-5, -1) and C(3, -2).



What is the area of $\triangle ABC$?

Solution:**Complete-the-rectangle solution**

A(-3, 4), B(-5, -1), C(3, -2) is [x : -5 → 3], [y : -2 → 4], so

$$A_{\text{rect}} = (3 - (-5)) \cdot (4 - (-2)) = 8 \cdot 6 = 48.$$

Outside of $\triangle ABC$ there are three right triangles:

- **Top-left:** legs 2 and 5 \Rightarrow area $\frac{1}{2} \cdot 2 \cdot 5 = 5$.
- **Top-right:** legs 6 and 6 \Rightarrow area $\frac{1}{2} \cdot 6 \cdot 6 = 18$.
- **Bottom-left:** legs 8 and 1 \Rightarrow area $\frac{1}{2} \cdot 8 \cdot 1 = 4$.

$$\text{Subtract: } [\triangle ABC] = 48 - (5 + 18 + 4) = 21.$$

Practice 3

If $\triangle ABC$ is an isosceles triangle with the base $|BC| = a$. The midpoint of BC and AC are D and E respectively and $|AD| = |DE|$. Find the area of $\triangle ABC$?

Solution:

- In isosceles $\triangle ABC$ with base $BC = a$, the midpoint D of BC makes AD a median and altitude $\Rightarrow AD \perp BC$.

$$\text{Let } AD = h \text{ and } BD = \frac{a}{2}.$$

- E is midpoint of AC. So DE is a midsegment in $\triangle ABC$:

$$DE \parallel AB \text{ and } DE = \frac{1}{2}AB.$$

$$\text{Given } AD = DE \Rightarrow h = \frac{1}{2}AB \Rightarrow AB = 2h.$$

$$\text{Right } \triangle ABD : AB^2 = AD^2 + BD^2 \Rightarrow (2h)^2 = h^2 + \left(\frac{a}{2}\right)^2 \\ \Rightarrow 3h^2 = \frac{a^2}{4} \Rightarrow h^2 = \frac{a^2}{12}, \text{ so } h = \frac{a}{2\sqrt{3}}.$$

$$\text{Area: } [\triangle ABC] = \frac{1}{2} \cdot BC \cdot AD = \frac{1}{2} \cdot a \cdot \frac{a}{2\sqrt{3}} = \frac{a^2\sqrt{3}}{12}$$

Practice 4

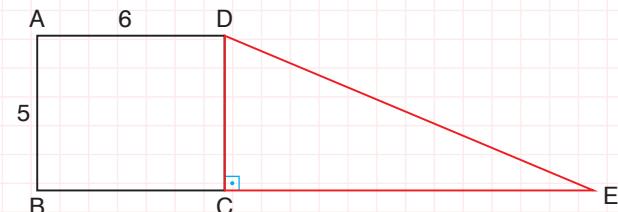
A triangle with vertices as $A = (1, 3)$, $B = (5, 1)$, and $C = (4, 4)$ is plotted on a 6×5 grid. What fraction of the grid is covered by the triangle?

A) $\frac{1}{6}$ B) $\frac{1}{5}$ C) $\frac{1}{4}$ D) $\frac{1}{3}$ E) $\frac{1}{2}$

Solution:

Practice 6

Rectangle ABCD and right triangle DCE have the same area. They are joined to form a trapezoid, as shown. What is DE?



A) 12 B) 13 C) 14 D) 15 E) 16

Solution:

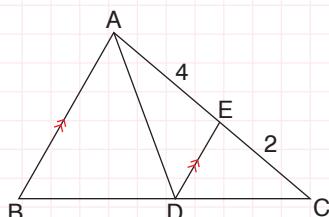
Practice 5

In $\triangle ABC$, $AB = BC = 29$, and $AC = 42$. What is the area of $\triangle ABC$?

A) 100 B) 420 C) 500 D) 609 E) 701

Solution:

Practice 7

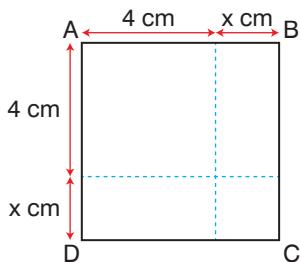


Segments AB and ED are parallel.

If the area of $\triangle EDC$ is 6, find area of $\triangle ABD$.

Solution:

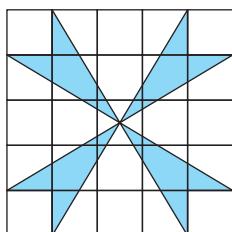
1.



The area of square ABCD is 24 cm^2 .

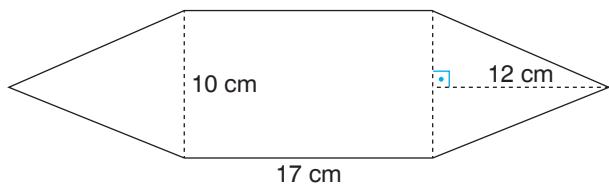
What is the value of $x^2 + 8x$?

2. (2007 AMC 8, #23)



What is the area of the shaded pinwheel shown in the 5×5 grid?

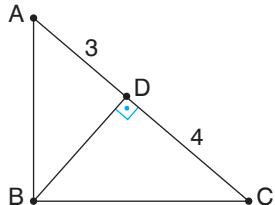
3. A banner is composed of two congruent triangles and a rectangle, as shown below.



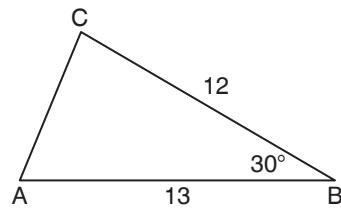
What is the total area of the banner in square centimeters?

4. (2009 AMC, #10)

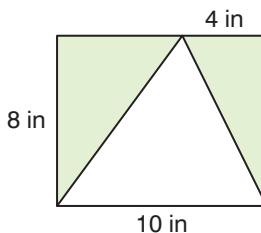
Triangle ABC has a right angle at B. Point D is the foot of the altitude from B, $AD = 3$, and $DC = 4$. What is the area of $\triangle ABC$?



5. In the figure below, the given side lengths of $\triangle ABC$ are in inches. What is the area, in square inches, of $\triangle ABC$?

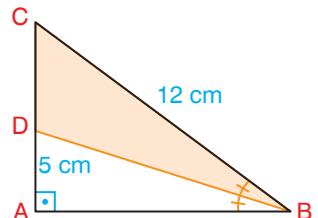


6. The rectangle shown in the figure below is partitioned into 3 triangles, 2 of which are shaded. What is the total area, in square inches, of the 2 shaded regions?



7. According to the figure, $[BD]$ is angle bisector of $\angle ABC$.

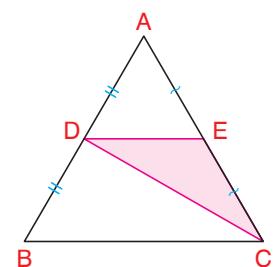
If $|AD| = 5 \text{ cm}$ and $|BC| = 12 \text{ cm}$ then find the area of $\triangle CDB$.



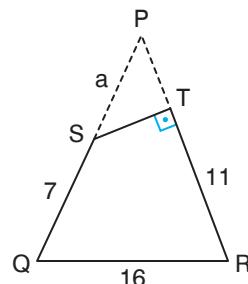
8. In the figure,

$|AD| = |DB|$ and $|AE| = |EC|$.

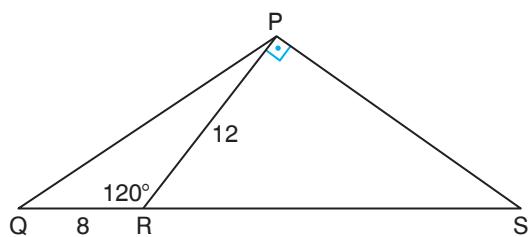
If $\triangle(ABC) = 72 \text{ cm}^2$ then find $A(DCE)$.



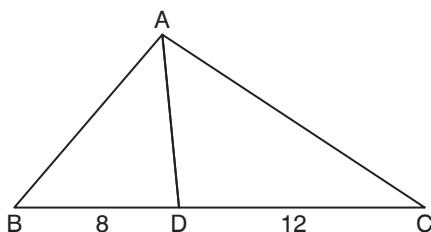
1. Isosceles triangle PQR has $PQ = PR$ and $QR = 16$. Point S is on PQ and T is on PR so that ST is perpendicular to PR, $ST = 8$, $TR = 11$, and $QS = 7$. The area of quadrilateral STRQ is



2. In the diagram, R is on QS and $QR = 8$. Also, $PR = 12$, $\angle PRQ = 120^\circ$, and $\angle RPS = 90^\circ$. What is the area of $\triangle QPS$?



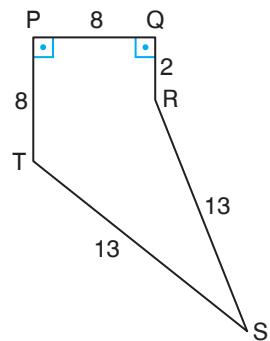
3. The area of $\triangle ABC$ is 60 square units. If $BD = 8$ units and $DC = 12$ units, the area (in square units) of $\triangle ABD$ is



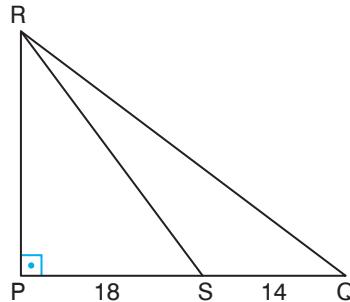
4.

3 congruent squares
Shadow Area = ?

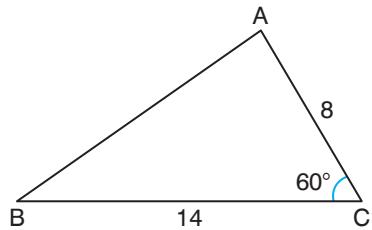
5. In the diagram, PQRST is a pentagon with $PQ = 8$, $QR = 2$, $RS = 13$, $ST = 13$, and $TP = 8$. Also, $\angle TPQ = \angle PQR = 90^\circ$. What is the area of pentagon PQRST?



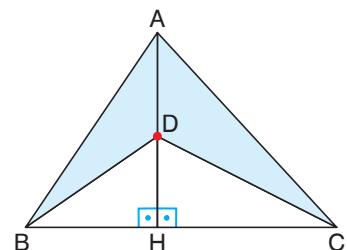
6. In $\triangle PQR$, $\angle RPQ = 90^\circ$ and S is on PQ. If $SQ = 14$, $SP = 18$, and $SR = 30$, then the area of $\triangle QRS$ is



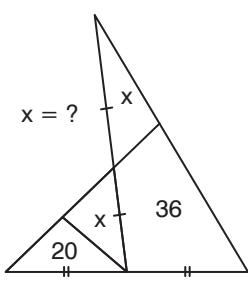
7. In a triangle ABC, $BC = 14$ cm, $AC = 8$ cm, and $m\angle ACB = 60^\circ$. What is the area of $\triangle ABC$?



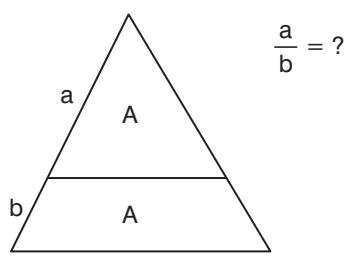
8. In the figure, point D lies on the altitude AH. Given that $BC = 10$, and $AD = 6$, find the area of $ABDC$.



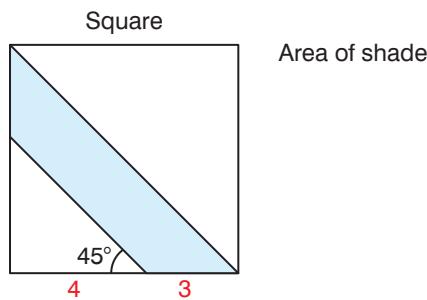
1.



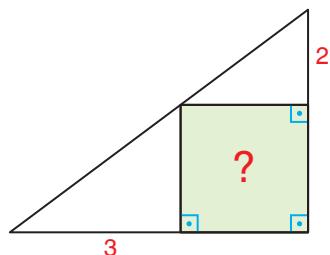
2. Equilateral triangle of two equal parts.



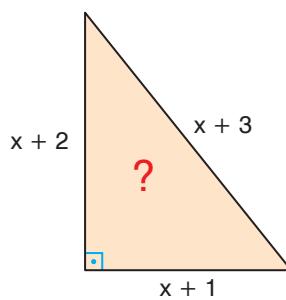
3.



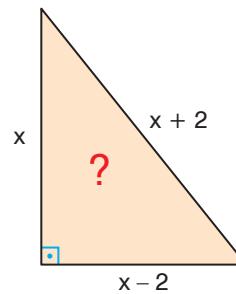
4.



5.

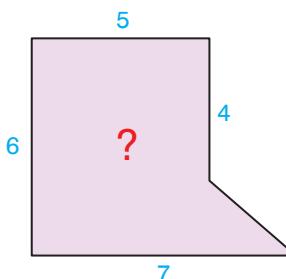


6.

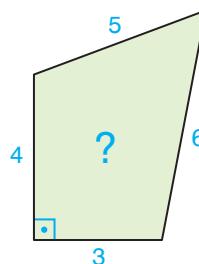


MathTopia Press

7.



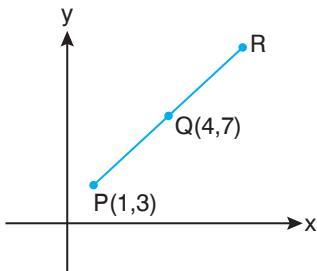
8.



Benchmark 4 (Chapters 12-15)

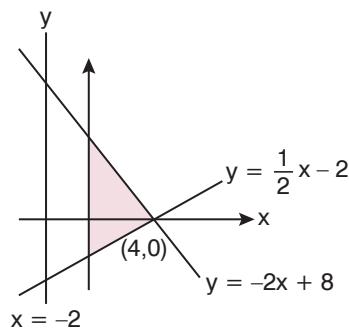
1. The vertices of a triangle are $(1, 1)$, $(5, 4)$ and $(3, 4)$. Find the area of the triangle.

2. In the diagram, point Q is the midpoint of PR. The coordinates of R are



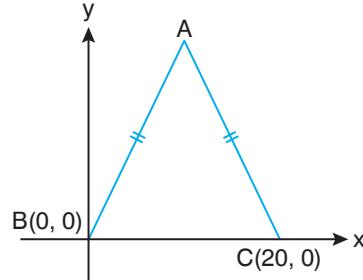
3. The lines $y = -2x + 8$ and $y = \frac{1}{2}x - 2$ meet at $(4, 0)$, as shown.

What is the area of the triangle formed by these two lines and the line $x = -2$?

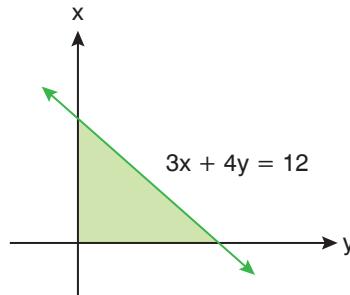


4. In the figure, ABC is an isosceles triangle, and its area is 180 square units.

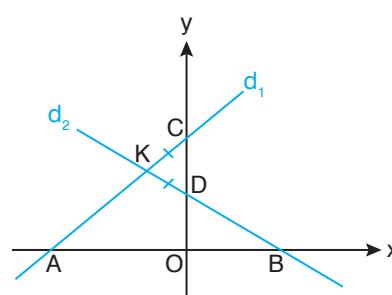
What is the y-coordinate of point A, if $AB = AC$?



5. What is the area bounded by the x-axis, y-axis, and $3x + 4y = 12$?



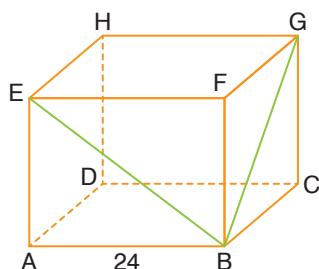
6. In the given figure, K is the intersection point of the lines d_1 and d_2 .



$A(-6, 0)$,
 $B(4, 0)$,
 $D(0, 2)$, and
 $CK = KD$.
Area ΔKDC ?

Benchmark 4 (Chapters 12-15)

7.



The figure is a rectangular prism. If $AB = 24$ cm, $EB = 25$ cm, and $BG = 25$ cm, what is the volume of the prism?

8. A rectangular box has integer side lengths in the ratio of $2 : 3 : 4$. Which of the following could be the volume of the box?

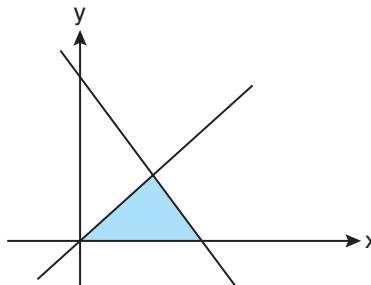
A) 72 B) 96
C) 120 D) 192

MathTopia Press

9. Which two-dimensional figure is always formed when a plane intersects a right cylinder perpendicular to its base?

(1) circle (2) rhombus
(3) triangle (4) rectangle

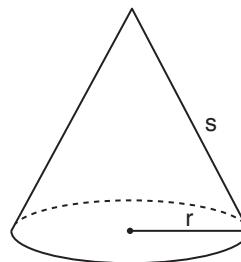
10. In the diagram, the shaded region is bounded by the x-axis and the lines $y = x$, and $y = -2x + 3$. The area of the shaded region is



11. Find the radius of the circle given by

$$x^2 + y^2 + 10x - 12y + 20 = 0$$

12.



The total surface area T of any right circular cone with a radius r and a slant height s can be determined using the formula

$$T = \pi r^2 + \pi r s.$$

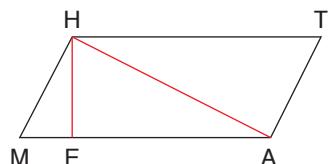
If a cone has a radius of 3 inches and slant height of 5 inches, what is its total surface area, in square inches?

Regents Geometry Exams: Altitude–hypotenuse similarity products (right triangles)

Problem 5

(NY Regents Geometry-Jun'19, #35)

Given: Quadrilateral MATH, $\overline{HM} \cong \overline{AT}$, $\overline{HT} \cong \overline{AM}$, $\overline{HE} \perp \overline{MEA}$, and $\overline{HA} \perp \overline{AT}$



Prove: $TA \cdot HA = HE \cdot TH$

Proof 1

Regular (paragraph) proof

Since $HM \cong AT$ and $HT \cong AM$, both pairs of opposite sides of MATH are congruent, so MATH is a parallelogram. Hence

$$HT \parallel MA \text{ and } HM \parallel AT.$$

Because $HE \perp MA$ and $HT \parallel MA$, it follows that $HE \perp HT$. Thus HE is the perpendicular distance between the parallel lines HT and MA. Point A lies on MA, so the altitude from A to the base HT in $\triangle AHT$ has length HE.

Triangle AHT is right at A (since $HA \perp AT$). Compute its area in two ways:

$$[\triangle AHT] = \frac{1}{2}(AT)(HA) \quad (\text{legs at the right angle}) = \frac{1}{2}(HT)(HE) \quad (\text{base HT, altitude HE}).$$

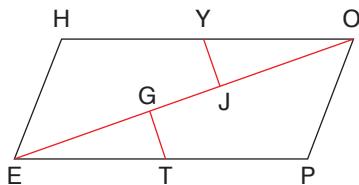
Equating the two expressions gives $AT \cdot HA = HT \cdot HE$, as required.

Proof 2

Statement	Reason
1. $HM \cong AT$ and $HT \cong AM$	Given
2. MATH is a parallelogram	In a quadrilateral, both pairs of opposite sides congruent \rightarrow parallelogram
3. $HT \parallel MA$ and $HM \parallel AT$	Opposite sides of a parallelogram are parallel
4. $HE \perp MA$	Given ($HE \perp MEA$)
5. $HE \perp HT$	If a line is perpendicular to one of two parallel lines, it's perpendicular to the other (3 & 4)
6. In $\triangle AHT$, $\angle HAT = 90^\circ$.	Given $HA \perp AT$
7. The altitude to base HT has length HE	$HE \perp HT$ and $A \in MA \parallel HT$; perpendicular distance between parallel lines is constant
8. $[\triangle AHT] = \frac{1}{2}(AT)(HA)$	Area of right triangle using legs (6)
9. $[\triangle AHT] = \frac{1}{2}(HT)(HE)$	Area with base HT and altitude HE(7)
10. $AT \cdot HA = HT \cdot HE$	Equate areas from (8) and (9)

Problem 6**(NY Regents Geometry-Jan'19, #35)**

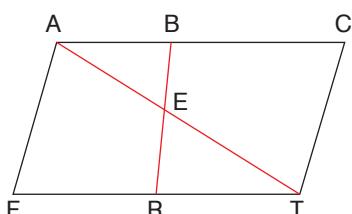
In quadrilateral HOPE below, $\overline{EH} \cong \overline{OP}$, $\overline{EP} \cong \overline{OH}$, $\overline{EJ} \cong \overline{OG}$, and \overline{TG} and \overline{YJ} are perpendicular to diagonal \overline{EO} at points G and J, respectively.



Prove that $\overline{TG} \cong \overline{YJ}$.

My Proof**Problem 7****(NY Regents Geometry-Aug'23, #35)**

In the diagram below of quadrilateral FACT, \overline{BR} intersects diagonal \overline{AT} at E, $\overline{AF} \parallel \overline{CT}$, and $\overline{AF} \cong \overline{CT}$.

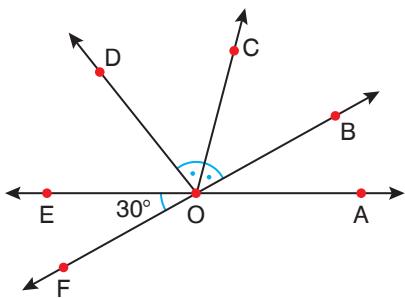


Prove: $(AB)(TE) = (AE)(TR)$

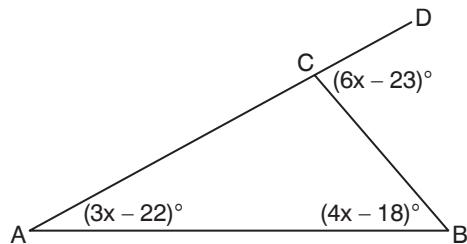
My Proof

GeoTopia 0.5 Post-Test & Evaluation

1. In the figure below, $\angle FOE = 30^\circ$ and $\angle AOD = 140^\circ$. Ray OC is the bisector of $\angle DOB$.
Find the measure of $\angle DOC$.



3. (NYSED, Geometry Regents Exam, June 2025, Q. 26)
In $\triangle ABC$ below, \overline{AC} is extended through C to D, $m\angle A = (3x - 22)^\circ$, $m\angle B = (4x - 18)^\circ$, and $m\angle BCD = (6x - 23)^\circ$.

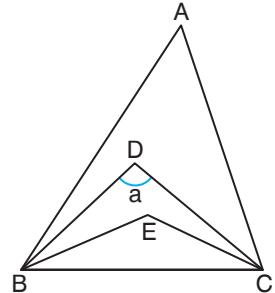


Determine and state $m\angle ACB$.

2. Two angles of an isosceles triangle measure 70 and x .
What is the sum of the three possible values of x ?

MathTopia Press

4. In the given figure,
 ABC is a triangle,
The trisection of angles B and C meet at points D and E, and
 $m\angle BAC = 30^\circ$.
What is $m\angle BDC = a$?



1. **20°.** $\angle HFG = 130^\circ$ so its acute supplement is 50° . Given $\angle EHF = 70^\circ$, the angle that ray HE makes with the base is $70^\circ - 50^\circ = 20^\circ$. Since $AB \parallel$ base, $m\angle ABE = 20^\circ$.

2. **36°.** Let $x = m\angle BAC$. Because $AB = AC$, we have $m\angle B = m\angle C = (180^\circ - x)/2$. Using $AD = BD = BC$ gives equal angles at those points; angle chasing leads to $5x = 180^\circ$, hence $x = 36^\circ$.

3. **30°.** $AB = AC$ and $m\angle BAC = 40^\circ$ so $m\angle B = m\angle C = 70^\circ$. Let $m\angle ABD = x$. In isosceles $\triangle DBC$ we get $m\angle DBC = m\angle BDC = 70^\circ - x$. Using the triangle sum for $\triangle DBC$ yields $x = 30^\circ$.

4. **45°.** $BC = CD = DA$ and $m\angle B = m\angle C = 80^\circ$. Triangles BCD and CDA are isosceles; solving their angle sums forces the remaining angle at A to be 45° .

5. **$4\sqrt{3}$.** Right triangle with a 60° angle and hypotenuse 8 gives opposite side $4\sqrt{3}$. So $AB = 4\sqrt{3}$.

6. **20°.** On hypotenuse \overline{SR} of right $\triangle STR$, $SQ : QR = 1 : 4$. Let $SQ = x$, $QR = 4x$. Altitude TQ satisfies $TQ^2 = SQ \cdot QR$: $8^2 = x \cdot 4x \Rightarrow x = 4$, so $SR = 5x = 20$.

7. **14°.** NE is a midsegment, so $NE = \frac{1}{2}GL$. Given $NE = 15$ and $GL = 3x - 12$, we get $15 = \frac{1}{2}(3x - 12) \Rightarrow x = 14$.

8. **$\frac{49}{2}$.** In a triangle, centroid divides each median in ratio 2 : 1 from vertex. $CE = 5 \Rightarrow CX = 10$; $YF = 21 \Rightarrow CF = 7$; $XZ = 15 \Rightarrow XF = 7.5$. So $P_{\triangle CFX} = CX + CF + XF = 10 + 7 + 7.5 = \frac{49}{2}$.

9. **4.** Big right triangle area is 12. The three small right triangles shown have total area $1+3+4=8$. Shaded area = $12-8=4$.

10. **4.** $\triangle ABC$ is right with legs 5, 12: area 30 and $AC = 13$. $\triangle ACD$ has sides 13, 14, 15; with $s = 21$, its area (Heron) is 84. So $[\triangle ABC] = 30 + 84 = 114$.

11. **114.** Square interior angle = 90° , regular pentagon interior angle = 108° . Using the shared side and exterior/interior relations, the marked sum $\angle CEB + \angle CBE$ is 18° .

12. **47.5°.** With $AB \parallel CD$, diagonals intersecting, and given $\angle MDA = 35^\circ$, $\angle DCE = 25^\circ$, $\angle NEC = 30^\circ$, angle chasing yields $m\angle ABD = 47.5^\circ$.

13. **13.** Rectangle area = $5 \cdot 6 = 30$. Right $\triangle DCE$ has height 5; set $\frac{1}{2} \cdot CE \cdot 5 = 30 \Rightarrow CE = 12$.
Then $DE = \sqrt{12^2 + 5^2} = 13$.

14. **5.** In the square, $AE = 8$ and $EC = 2$. Using coordinates or Pythagoras on right triangles inside, one finds $DE = 5$.

15. **1800.** Bases $BC = 50$, $AE = 30$, height 24. Area of trapezoid $ABCD$: $\frac{1}{2} (50 + 30) \cdot 24 = 40 \cdot 45 = 1800$.

16. **108.** Square ABCD with E midpoint of CD. Quadrilateral AFED has area 45. Let side be s . Then $45 = \frac{3}{4}s^2 \Rightarrow s^2 = 60$, so total area ABCD = $4 \cdot 27 = 108$.